
THE DIVISION ALGORITHM IN Z AND F [T ]

KEITH CONRAD

1. Introduction

In the integers we can carry out a process of division with remainder, as follows.

Theorem 1.1. For all integers a and b, with b 6= 0 there are unique integers q and r such
that

a = bq + r, 0 ≤ r < |b|.

Division with remainder is also possible for certain systems of polynomials. We only work
with polynomials in one variable, T . Set

Z[T ] = {c0 + c1T + · · ·+ cdT
d : d ≥ 0, ci ∈ Z},

Q[T ] = {c0 + c1T + · · ·+ cdT
d : d ≥ 0, ci ∈ Q},

R[T ] = {c0 + c1T + · · ·+ cdT
d : d ≥ 0, ci ∈ R},

C[T ] = {c0 + c1T + · · ·+ cdT
d : d ≥ 0, ci ∈ C}.

For example, Z[T ] is the collection of all polynomials in T with coefficients in Z and Q[T ]
is the collection of all polynomials in T with coefficients in Q. One polynomial in Z[T ] is
4T 3−7T +8, and one polynomial in Q[T ] are T 3− (5/4)T 2 +(9/7). From Z ⊂ Q ⊂ R ⊂ C
we have Z[T ] ⊂ Q[T ] ⊂ R[T ] ⊂ C[T ].

The desired form of division with remainder for polynomials is this: for polynomials f(T )
and g(T ), where g(T ) 6= 0, we want there to be unique polynomials q(T ) and r(T ) such
that f(T ) = g(T )q(T ) + r(T ) and r(T ) = 0 or deg r(T ) < deg g(T ). We want this to take
place in some system of polynomials, such as Z[T ] or Q[T ].

However, there is a serious problem in Z[T ]: division with remainder is not always
possible! For example, we can’t divide T 2 by 2T + 1 in Z[T ]. In Q[T ] we can say
T 2 = (2T +1)(T/2−1/4)+1/4, with quotient q(T ) = T/2−1/4 and remainder r(T ) = 1/4
in Q[T ], but we can’t have T 2 = (2T + 1)q(T ) + r(T ) in Z[T ]: the leading coefficient of
T 2 is 1 while the leading coefficient of (2T + 1)q(T ) + r(T ) in Z[T ] is 2 times the leading
coefficient of q(T ), and that’s even but 1 is not even.

It turns out that we get a nice result for division of polynomials if the coefficients of the
polynomials are in Q,R, or C. More generally, we’re okay with division for polynomials
whose coefficients are in a field, where a field is the name for a system of numbers where the
usual algebraic rules of addition, subtraction, and multiplication hold, and we can divide by
every nonzero number. For example, Q, R, and C are each fields (e.g., (2/3)/(4/5) = 5/6),
but Z is not a field since 2 and 3 are in Z but 2/3 is not. Here is the statement of division
with remainder for polynomials with coefficients in a field, and note how similar it is to
Theorem 1.1.
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Theorem 1.2. Let F be a field. For all f(T ) and g(T ) in F [T ], with g(T ) 6= 0, there are
unique q(T ) and r(T ) in F [T ] such that

f(T ) = g(T )q(T ) + r(T ), r(T ) = 0 or deg r(T ) < deg g(T ).

When we speak about a “field F”, think of F as something like Q, R, or C, but not Z.
In both Theorem 1.1 and 1.2, there are two things to be proved: for each a and nonzero

b in Z, or f(T ) and nonzero g(T ) in F [T ], a quotient and remainder exist satisfying the
conclusions of the theorem and there is only one such quotient and remainder. Often when
proving such “existence and uniqueness” theorems, it is convenient to split up the proof
into an existence part and a uniqueness part.

Not only do Theorems 1.1 and 1.2 look the same, but they can be proved in similar
(although not exactly identical) ways. First we will prove Theorem 1.1, and then we will
adapt the ideas there for a proof of Theorem 1.2. We will then describe one application of
the division theorem in Z and F [T ] that is widely used: base expansions.

2. Proof of Theorem 1.1

Proof. Uniqueness: For a choice of integers a and b with b 6= 0, assume there are q1, r1 and
q2, r2 in Z that both satisfy the conclusion of the theorem for that a and b. That is,

(2.1) a = bq1 + r1, 0 ≤ r1 < |b|
and

(2.2) a = bq2 + r2, 0 ≤ r2 < |b|.
Comparing the equations in (2.1) and (2.2), we have bq1 + r1 = bq2 + r2. Subtracting,

(2.3) b(q1 − q2) = r2 − r1.

This implies the difference r2 − r1 is a multiple of b.
Because r1 and r2 range from 0 to |b| − 1, the difference r2 − r1 is smaller in absolute

value than |b|. (Why?) Feeding this into (2.3) implies

|b(q1 − q2)| = |r2 − r1| < |b|.
The only integer multiple of b that is smaller in absolute value than |b| is 0, so b(q1−q2) = 0.
Because b 6= 0 (aha...), we must have q1 − q2 = 0, so q1 = q2. Then, returning to (2.3),
r2 − r1 = b · 0 = 0 and we get r1 = r2.

Existence: For a choice of integers a and b with b 6= 0, we want to prove there are q and
r in Z such that a = bq + r and 0 ≤ r < |b|. We will give two proofs. The first one will be
very short, while the second may look more fussy and formal. It is the second proof, not
the first, whose ideas can generalize to the polynomial setting of Theorem 1.2.

The most interesting case is b > 0, so we treat this first. Consider all the integer multiples
of b: {0,±b,±2b, . . . }. Since b 6= 0, these multiples are equally spaced all along the real
line. The integer a lies in the interval between consecutive multiples of b:

(2.4) bq ≤ a < b(q + 1)

for some q ∈ Z. (Why is b > 0 necessary here?) Now subtract bq from all terms in (2.4) to
get 0 ≤ a− bq < b. Set r = a− bq, so 0 ≤ r < b = |b|. We are done.

For a second proof of existence of q and r when b > 0, we treat the cases a ≥ 0 and a < 0
separately. We fix b > 0 and will show for each a ≥ 0 there are appropriate q and r, and
then we will show for each a < 0 there are appropriate q and r.
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When a ≥ 0, we argue by (strong) induction on a. If 0 ≤ a < b then we can use q = 0 and
r = a. Suppose now that a ≥ b and for all integers a0 with 0 ≤ a0 < a we have the existence
of a q0 and r0 for a0 and b in Theorem 1.1 (namely a0 = bq0 + r0 where 0 ≤ r0 < b). To get
q and r for a and b, we will replace a with a0 := a− b. Since a ≥ b > 0, we have 0 ≤ a0 < a.
Therefore by induction there are integers q0 and r0 such that a0 = bq0 + r0 and 0 ≤ r0 < b.
Writing this as

a− b = bq0 + r0, 0 ≤ r0 < b,

add b to both sides of the equation: a = b(q0 + 1) + r0. Use q = q0 + 1 and r = r0. This
completes the second proof of existence for b > 0 and a ≥ 0.

If a < 0 and b > 0, then consider −a and b. Both are positive, so by the previous case
we can write

−a = bQ + R, 0 ≤ R < b.

Negating, we have a = b(−Q)−R with −b < −R ≤ 0. If R = 0 then a = b(−Q) so we can
use q = −Q and r = 0. If R > 0, so −b < −R < 0, we want to add b to −R to make it
positive (and still small), so write a = b(−Q− 1) + (b−R) with 0 < b−R ≤ b. We can use
q = −Q− 1 and r = b−R

Finally, if b < 0 and a is arbitrary, then consider a and −b. From what we already
showed, we can write a = −bQ + R where 0 ≤ R < b. Writing this as a = b(−Q) + R, we
can use q = −Q and r = R. �

Reread this proof until you see what’s going on. Run through the proof with several
choices for a and b, such as a = 17 and b = 5, or a = −17 and b = 3.

3. Proof of Theorem 1.2

As with the proof of Theorem 1.1, we first show uniqueness and then existence.

Proof. Uniqueness: Picking f(T ) and g(T ) in F [T ] with g(T ) being nonzero, suppose there
are q1(T ), r1(T ) and q2(T ), r2(T ) in F [T ] that both satisfy the conclusion of Theorem 1.2:

(3.1) f(T ) = g(T )q1(T ) + r1(T ), r1(T ) = 0 or deg r1(T ) < deg g(T )

and

(3.2) f(T ) = g(T )q2(T ) + r2(T ), r2(T ) = 0 or deg r2(T ) < deg g(T ).

Comparing the equations in (3.1) and (3.2), we have g(T )q1(T )+r1(T ) = g(T )q2(T )+r2(T ).
Subtracting,

(3.3) g(T )(q1(T )− q2(T )) = r2(T )− r1(T ).

This implies the difference r2(T )− r1(T ) is a polynomial multiple of g(T ).1

To prove q1(T ) = q2(T ) and r1(T ) = r2(T ), we will argue by contradiction. Assume
q1(T ) 6= q2(T ). Then q1(T )− q2(T ) 6= 0, so the left side of (3.3) is not 0 and therefore the
right side is not 0: r1(T ) 6= r2(T ). We are going to look at the degrees of both sides of
(3.3).2 On the left side of (3.3), since the factors g(T ) and q1(T )− q2(T ) are not 0, we have

(3.4) deg(g(T )(q1(T )− q2(T )) = deg g(T ) + deg(q1(T )− q2(T )) ≥ deg g(T ).

1The argument so far is just like the proof of uniqueness in Z.
2Here we need a slightly different argument than in Z, since polynomials don’t have absolute values. We

use the degree as a measure of size instead.
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On the right side of (3.3), r1(T ) and r2(T ) are 0 or have degree less than deg g(T ), so the
highest power of T in either of them is less than deg g(T ). Since a difference of polynomials
can’t lead to powers of T appearing above the highest power of T in either term, the highest
power of T in r2(T )− r1(T ) is at most the highest power in r1(T ) and r2(T ), which is less
than deg g(T ). Therefore

(3.5) deg(r2(T )− r1(T )) < deg g(T ).

Equations (3.4) and (3.3) are inconsistent, since g(T )(q1(T ) − q2(T )) = r2(T ) − r1(T ).
Therefore our assumption that q1(T ) 6= q2(T ) is wrong: we must have q1(T ) = q2(T ), so by
(3.3) we get r1(T )− r2(T ) = 0, so r1(T ) = r2(T ).

Existence: Given f(T ) and g(T ) in F [T ] with nonzero g(T ), we want to find q(T ) and
r(T ) in F [T ] such that

(1) f(T ) = g(T )q(T ) + r(T ),
(2) r(T ) = 0 or deg r(T ) < deg g(T ).

We will do this by modifying a proof for the analogous situation in Z (existence of q and
r) that we have already discussed in Theorem 1.1.

The first proof of the existence of q and r in Theorem 1.1 does not generalize to polyno-
mials: what would “equally spaced” polynomials mean? However, the second proof of the
existence part of Theorem 1.1 will carry over to polynomials, using induction on the degrees
of polynomials. Specifically, we fix g(T ) and will prove the existence of q(T ) and r(T ) for
all f(T ) by using induction on the degree of f(T ).

The case when g(T ) is constant (that is, deg g(T ) = 0) is easy: if g(T ) = c is a nonzero
constant then for each f(T ) we can use q(T ) = (1/c)f(T ) and r(T ) = 0.

Fix now a nonconstant g(T ) ∈ F [T ]. If f(T ) = 0 use q(T ) = 0 and r(T ) = 0. To show
for all nonzero f(T ) in F [T ] that there are polynomials q(T ) and r(T ) in F [T ] such that
f(T ) = g(T )q(T ) + r(T ) such that r(T ) = 0 or deg r(T ) < deg g(T ), we will use strong
induction on deg f(T ). That is, for every integer n ≥ 0 we will prove the existence of q(T )
and r(T ) for all f(T ) of degree n by strong induction on n.

If n < deg g(T ), then for each f(T ) of degree n we can use q(T ) = 0 and r(T ) = f(T ).3

Now assume that n ≥ deg g(T ) and the existence of q(T ) and r(T ) has been proved for g(T )
and all polynomials f(T ) of degree less than n. We will use this to show there are q(T ) and
r(T ) for the same g(T ) and every f(T ) of degree n. Write the leading terms of f(T ) and
g(T ) as

f(T ) = anT
n + lower order terms,

g(T ) = cdT
d + lower order terms.

Here n ≥ d (why?). We now look to the proof of existence for Z for inspiration. In Z,
when a ≥ b we passed from the case of a and b to the previous case of a − b and b, which
was useful because a − b < a. In the polynomial case we want to do something similar,
but the direct analogue of using f(T ) − g(T ) in place of f(T ) will usually not work since
deg(f(T )−g(T )) = n if n > d: the degree does not drop. What we will do to get around that
is subtract from f(T ) a multiple of g(T ), not just g(T ) itself, in order to get a polynomial
of degree less than n.

We’ll use the simplest kind of multiple of g(T ): multiplication by a monomial cT i. The
leading term of g(T )(cT i) is cdcT

d+i. We want this to match the leading term of f(T ) so

3This corresponds to the case 0 ≤ a < b in the proof for Z when b > 0, where we can use q = 0 and r = a.
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their difference has the leading term cancel and thus cause the degree to drop. Making the
leading terms match means cdc = an and d + i = n. In other words, take c = an/cd

4 and
i = n− d:

g(T )

(
an
cd

Tn−d
)

=
(
cdT

d + lower order terms
)(an

cd
Tn−d

)
= anT

n + lower order terms.

Since f(T ) and g(T )(an/cd)Tn−d have the same leading term anT
n, the difference f(T ) −

g(T )(an/cd)Tn−d is either 0 or is a polynomial of degree less than n.
Case 1: If the difference is 0 then f(T ) = g(T )(an/cd)Tn−d, so f(T ) = g(T )q(T ) + r(T )

where q(T ) = (an/cd)Tn−d and r(T ) = 0.
Case 2: If the difference has degree less than n, then by the inductive hypothesis there

are q0(T ) and r0(T ) in F [T ] such that

(1) f(T )− g(T )(an/cd)Tn−d = g(T )q0(T ) + r0(T ),
(2) r0(T ) = 0 or deg r0(T ) < deg g(T ).

Bring g(T )(an/cd)Tn−d to the other side in (1):

f(T ) = g(T )(an/cd)Tn−d + g(T )q0(T ) + r0(T ) = g(T )((an/cd)Tn−d + q0(T )) + r0(T ).

Therefore f(T ) = g(T )q(T )+r(T ) where q(T ) = (an/cd)Tn−d+q0(T ) and r(T ) = r0(T ). �

In the last part of the proof (the ‘reduction’ part), we multiplied g(T ) by a monomial
(an/cd)Tn−d to make the top term match the top term of f(T ) (in both degree and coeffi-
cient), so their difference has lower degree (or is 0). This process can be repeated to drop
the degree further, until we get a polynomial that has degree less than deg g(T ) or is the
polynomial 0. Putting everything back together, we got q(T ) and r(T ). This is essentially
the algorithm that is taught in school to divide one polynomial by another, but presented
in a less formal way.

Example 3.1. Let f(T ) = 7T 4 − 1 and g(T ) = T 2 + 5T . What are q(T ) and r(T ) making
f(T ) = g(T )q(T ) + r(T ) with r(T ) = 0 or deg r(T ) < 2? Since f(T ) has the same leading
term as 7T 2g(T ), we compute

f(T )− 7T 2g(T ) = −35T 3 − 1.

Since −35T 3 − 1 has the same leading term as −35Tg(T ), we compute

(−35T 3 − 1)− (−35Tg(T )) = 175T 2 − 1.

Since 175T 2 − 1 has the same leading term as 175g(T ), we compute

(175T 2 − 1)− 175g(T ) = −875T − 1,

whose degree is less than 2 = deg g(T ), so we stop. Feeding each equation into the previous
ones gives

f(T ) = 7T 2g(T )− 35T 3 − 1

= 7T 2g(T )− 35Tg(T ) + (175T 2 − 1)

= 7T 2g(T )− 35Tg(T ) + 175g(T )− 875T − 1

= g(T )(7T 2 − 35T + 175)− 875T − 1.

Thus q(T ) = 7T 2 − 35T + 175 and r(T ) = −875T − 1.

4Here we use the fact that the coefficients of the polynomial are in a field, because that is how we know
that we can solve cdc = an for c by using division by cd.
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Example 3.2. Let f(T ) = 2T 4 + T 2 + 6 and g(T ) = 3T 2 + 1. Since f(T ) has the same
leading term as 2

3T
2g(T ), we compute

f(T )− 2

3
T 2g(T ) =

1

3
T 2 + 6.

The right side has the same leading term as 1
9g(T ), so we compute(

1

3
T 2 + 6

)
− 1

9
g(T ) =

53

9
,

whose degree is less than 2 = deg g(T ), so we stop. Feeding the equations into each other
gives

f(T ) =
2

3
T 2g(T ) +

1

3
T 2 + 6

=
2

3
T 2g(T ) +

1

9
g(T ) +

53

9

= g(T )

(
2

3
T 2 +

1

9

)
+

53

9
,

so q(T ) = 2
3T

2 + 1
9 and r(T ) = 53

9 .

4. Division algorithm in Z[T ]

Theorem 1.2 is not true if we work in Z[T ] instead of F [T ]. More precisely, the existence
part breaks down: if f(T ) and g(T ) are in Z[T ], the proof of Theorem 1.2 does not generally
lead to q(T ) and r(T ) in Z[T ] such that f(T ) = g(T )q(T ) + r(T ) where r(T ) = 0 or
deg r(T ) < deg g(T ). (The uniqueness part goes through in Z[T ] without a problem.) Look
at Example 3.2. The initial data f(T ) and g(T ) are in Z[T ] while q(T ) and r(T ) are not in
Z[T ]. Why is that? Where does the proof break down?

The proof of the existence of q(T ) and r(T ) has a problem in Z[T ] in exactly one step:
when we want to multiply g(T ) = cdT

d + · · · by a suitable monomial to get the top term to
match that of f(T ) = anT

n + · · · , we want to multiply g(T ) by some cTn−d where cdc = an.
When the coefficients of polynomials are in a field we can take c = an/cd. But when an and
cd are in Z, the equation cdc = an may not have a solution for c in Z. For example, if cd
is even and an is odd there is no solution in Z for c. (If we were working in Q[T ] then at
this step denominators get introduced in q(T ) and r(T ) from the leading coefficient cd of
g(T ). For instance, in the second example after the proof of Theorem 1.2, g(T ) has leading
coefficient 3 and q(T ) and r(T ) have coefficients with denominators 3 and 9.)

A special (and important!) case where division in Z[T ] is valid is when the leading
coefficient of g(T ) is 1 and f(T ) is arbitrary. In this case the difficulty in the proof of
Theorem 1.2 for Z[T ] does not arise. Let’s record this result.

Theorem 4.1. For f(T ) and g(T ) in Z[T ] where g(T ) has leading coefficient 1, there are
unique q(T ) and r(T ) in Z[T ] such that

f(T ) = g(T )q(T ) + r(T ), r(T ) = 0 or deg r(T ) < deg g(T ).

The reader should check carefully that the proof of Theorem 1.2 carries over to the setting
of Theorem 4.1.

We already saw an example of Theorem 4.1 in Example 3.1. There g(T ) has leading
coefficient 1 and the resulting q(T ) and r(T ) are in Z[T ].
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5. Base expansions

Writing positive integers in base 10 is closely related to division by 10. For example,

36137 = 36130+7 = 3613·10+7 = (361·10+3)·10+7 = (((3·10+6)·10+1)·10+3)·10+7.

The digits of 36137 are in boldface in the last expression. This calculation can be written
in terms of successive division by 10:

36137 = 10 · 3613 + 7

3613 = 10 · 361 + 3,

361 = 10 · 36 + 1,

36 = 10 · 3 + 6,

3 = 10 · 0 + 3.

The base 10 digits are remainders on the right in reverse order. To write 36137 in base 6,

36137 = 6 · 6022 + 5,

6022 = 6 · 1003 + 4,

1003 = 6 · 167 + 1,

167 = 6 · 27 + 5,

27 = 6 · 4 + 3,

4 = 6 · 0 + 4.

Using the remainders in reverse order, we’d write 36137 = 4351456. That means 36137 =
4 · 65 + 3 · 64 + 5 · 63 + 1 · 62 + 4 · 6 + 5 (check!).

Theorem 5.1. Fix an integer b > 1. Each n ∈ Z+ can be written in exactly one way as

(5.1) n = ckb
k + ck−1b

k−1 + · · ·+ c1b + c0

where k ≥ 0 and 0 ≤ ci ≤ b− 1, with ck 6= 0.

The expression on the right side of (5.1) is called the base b representation of n.

Proof. We break up the proof into two parts: existence of a base b representation for each
positive integer n and then uniqueness of the base b representation for each positive integer
n.

Existence: We use (strong) induction on n. If 1 ≤ n ≤ b− 1 then we can use k = 0 and
c0 = n. Suppose n ≥ b and we can write all positive integers less than n in base b. As in
the example of 36137 above, we will construct the base representation of n by starting with
what will turn out to be its “units” digit c0. Using division of n by b,

(5.2) n = bq + r

where 0 ≤ r ≤ b − 1 and q ≥ 0 (we don’t have q < 0, since then q ≤ −1 and bq + r ≤
−b + r = r − b < 0, a contradiction). The integer q is “obviously” smaller than n. Let’s
check: since n ≥ b we don’t have q = 0 in(5.2), so q ≥ 1. Then n = bq + r ≥ bq > q, so
0 < q < n.

We can now apply the (strong) inductive hypothesis to q: the number q has a base b
representation, say

q = a`b
` + a`−1b

`−1 + · · ·+ a1b + a0
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where ` ≥ 0 and 0 ≤ ai ≤ b− 1 with a` 6= 0. Feeding this into (5.2),

n = bq + r

= b(a`b
` + a`−1b

`−1 + · · ·+ a1b + a0) + r

= a`b
`+1 + a`−1b

` + · · ·+ a1b
2 + a0b + r,

which is a base b representation for n as in (5.1): set k = ` + 1, c0 = r, and ci = ai−1 for
i = 1, . . . , k.

Uniqueness: In (5.1), n ≥ ckb
k ≥ bk, so if 0 ≤ n < b then necessarily k = 0 and c0 = n.

This takes care of the uniqueness when n is less than b. From now on suppose n ≥ b, so a
base b representation must have k ≥ 1

Write two base b representations for n as

n = ckb
k + ck−1b

k−1 + · · ·+ c1b + c0, n = c′`b
` + c′`−1b

`−1 + · · ·+ c′1b + c′0,

where k, ` ≥ 1 and the “digits” ci and c′j are in {0, . . . , b− 1}. The uniqueness of the base

b representation for n means k = ` and c′i = ci for i = 0, . . . , k. That is what we want to
show.

Rewrite the two base b representations for n as

n = b(ckb
k−1+ck−1b

k−2+· · ·+c1)+c0 = bq+r, n = b(c′`b
`−1+c′`−1b

`−2+· · ·+c′1)+c′0 = bq′+r′,

where q = ckb
k−1 + ck−1b

k−2 + · · ·+ c1, r = c0, q
′ = c′`b

`−1 + c′`−1b
`−2 + · · ·+ c′1, and r′ = c′0.

Therefore n = bq + r = bq′ + r′ where q and q′ are in Z and 0 ≤ r, r′ < b. From the
uniqueness of the quotient and remainder in the division algorithm in Z, q = q′ and r = r′.
From the remainders being equal, c0 = c′0. From the quotients being equal, q has two base
b representations:

q = ckb
k−1 + ck−1b

k−2 + · · ·+ c1 = c′`b
`−1 + c′`−1b

`−2 + · · ·+ c′1.

The quotient q is positive and less than n (as in the proof of the existence part), so by
(strong) induction its base b representation is unique. Therefore k−1 = `−1, so k = `, and
digits for corresponding powers of b match: c1 = c′1, c2 = c′2, . . . , ck = c′k. Therefore k, the
highest power of b in the base b representation of n is unique and the digits c0, c1, . . . , ck in
the base b representation of n are unique. �

In F [T ], elements automatically appear in “base T”, but we can get a base representation
using other nonconstant polynomials by adapting the proof from Z+ to the setting of F [T ].

Theorem 5.2. Fix a nonconstant polynomial b(T ) in F [T ]. For each nonzero f(T ) in
F [T ], there is a unique way to write

f(T ) = ck(T )b(T )k + ck−1(T )b(T )k−1 + · · ·+ c1(T )b(T ) + c0(T )

where k ≥ 0 and ci(T ) is 0 or 0 ≤ deg ci ≤ deg b(T ), with ck(T ) 6= 0.

Proof. First establish existence, then uniqueness. Existence is proved by strong induction
on the degree of nonzero polynomials, as in the existence part of the proof of Theorem
5.1 but using division in F [T ] instead of in Z. Uniqueness is proved from uniqueness of
the remainder for division by b(T ) together with strong induction on the degree of the
polynomial, as in the uniqueness part of the proof of Theorem 5.1. Details are left to the
reader. �
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Example 5.3. In R[T ], let’s write T 5 + T 2 − 2 in base T 2 + 1. Since the base has degree
2, each “digit” is a polynomial of degree less than 2 (or the digit is 0). Dividing by T 2 + 1
repeatedly in the same way that we wrote 36137 in base 6 using repeated division by 6,

T 5 + T 2 − 2 = (T 2 + 1)(T 3 − T + 1) + (T − 3),

T 3 − T + 1 = (T 2 + 1)(T )− 2T + 1,

T = (T 2 + 1)(0) + T.

Using the remainders in reverse order, check that the “digits” of T 5 +T 2− 2 in base T 2 + 1
are T , −2T + 1, and T − 3:

T (T 2 + 1)2 + (−2T + 1)(T 2 + 1) + (T − 3) = T 5 + T 2 − 2.

An application of polynomial base expansions in integral calculus is given in the appendix,
concerning the integration of rational functions. The full scope of integration of rational
functions is usually avoided in a calculus course, since the general case involves “too much
algebra”. One aspect of that algebra is base expansions for a polynomial base of degree 2.

Appendix A. Polynomial base expansions and integration

Polynomial base expansions appear in integral calculus to integrate rational functions
with a repeated denominator. For example, if we want to determine∫

x5 + x2 − 2

(x2 + 1)3
dx,

where the denominator is the third power of x2+1, then write the numerator in base x2+1,
separate terms, and simplify: from Example 5.3,

x5 + x2 − 2

(x2 + 1)3
=

x(x2 + 1)2 + (−2x + 1)(x2 + 1) + (x− 3)

(x2 + 1)3
=

x

x2 + 1
+
−2x + 1

(x2 + 1)2
+

x− 3

(x2 + 1)3
.

On the right side each denominator is a power of x2 +1 and the numerators are the “digits”
in base x2 + 1: they are polynomials of degree at most 1. Split the integrand on the right
side into two sums of rational functions, one having numerators equal to x and one having
numerators equal to 1:

(A.1)

∫ (
x

x2 + 1
− 2

x

(x2 + 1)2
+

x

(x2 + 1)3

)
dx +

∫ (
1

(x2 + 1)2
− 3

1

(x2 + 1)3

)
dx.

Expansions with base x2 + 1 have reduced us to evaluate the special integrals

In :=

∫
x

(x2 + 1)n
dx, Jn :=

∫
1

(x2 + 1)n
dx.

for n ≤ 3. The integrals I1 and J1 can both be found from elementary calculus: using the
substitution u = x2 + 1, so du = 2x dx,

I1 =

∫
x

x2 + 1
dx =

1

2

∫
du

u
=

1

2
log u =

1

2
log(x2 + 1) + C,

while

J1 =

∫
1

x2 + 1
dx = arctanx + C.
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For n ≥ 2, In can be computed with the same substitution u = x2 + 1 as above:

In =

∫
x

(x2 + 1)n
dx =

1

2

∫
du

un
=

−1

2(n− 1)un−1
+ C =

−1

2(n− 1)(x2 + 1)n−1
+ C.

For example,

I2 =
−1

2(x2 + 1)
+ C, I3 =

−1

4(x2 + 1)2
+ C.

The integrals Jn for n ≥ 2 don’t have a simple direct formula, but can be computed
recursively using integration by parts. Taking u = 1/(x2 + 1)n and dv = dx, so du =
−2nx/(x2 + 1)n+1 and v = x,

Jn =

∫
1

(x2 + 1)n
dx =

∫
udv = uv −

∫
v du =

x

(x2 + 1)n
+ 2n

∫
x2

(x2 + 1)n+1
dx.

In the integral on the right, write x2 as x2 + 1− 1:∫
x2

(x2 + 1)n+1
dx =

∫
(x2 + 1)− 1

(x2 + 1)n+1
dx =

∫
1

(x2 + 1)n
dx−

∫
1

(x2 + 1)n+1
dx = Jn−Jn+1,

so

Jn =
x

(x2 + 1)n
+ 2n(Jn − Jn+1) =⇒ Jn+1 =

x

2n(x2 + 1)n
+

2n− 1

2n
Jn.

Armed with this recursion for Jn and the initial value J1 = arctanx + C, we get

J2 =
x

2(x2 + 1)
+

1

2
arctanx + C,

J3 =
x

4(x2 + 1)2
+

3x

8(x2 + 1)
+

3

8
arctanx + C.

Plugging the computed values of I1, I2, I3, J1, and J2 into (A.1),∫
x5 + x2 − 2

(x2 + 1)3
dx = (I1 − 2I2 + I3) + (J2 − 3J3)

=

(
1

2
log(x2 + 1) +

1

x2 + 1
− 1

4(x2 + 1)2

)
+(

x

2(x2 + 1)
+

1

2
arctanx− 3x

4(x2 + 1)2
− 9x

8(x2 + 1)
− 9

8
arctanx

)
+ C.

Combining like terms together,∫
x5 + x2 − 2

(x2 + 1)3
dx =

1

2
log(x2 + 1)− 5

8
arctanx +

−(5/8)x + 1

x2 + 1
+
−(3/4)x− 1/4

(x2 + 1)2
+ C

=
1

2
log(x2 + 1)− 5

8
arctanx− 5x− 8

8(x2 + 1)
− 3x + 1

4(x2 + 1)2
+ C.
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